一、题目:
l-(edge-)-connectivity of random graphs
二、主讲人:
史永堂
三、摘要:
For an integer l≥2 , the l-connectivity κ_l (G) of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. The l-edge-connectivity λ_l (G) of a graph G is the minimum number of edges whose removal leaves a graph with at least l components if |V(G)|≥l, and λ_l (G)=|E(G)| if |V(G)|<l. Given integersk≥0andl≥2,we investigate κ_l (G(n,p)) and λ_l (G(n,p)) when np≤logn+kloglogn . Furthermore, our arguments can be used to show that in the random graph process, the hitting times of minimum degree at least k and of l-connectivity (or l-edge-connectivity) at least k(l-1) coincide with high probability. These results generalize the work of Bolloba ́s and Thomason on classical connectivity.
四、主讲人简介:
史永堂,南开大学教授,博士生导师。2004年获得西北大学学士学位,2009年获得南开大学博士学位,主要研究方向为图论与组合优化,在J. Combin. Theory Ser. B, SIAM J. Discrete Math., J. Graph Theory等高水平杂志上发表学术论文60余篇。先后主持国家自然科学基金优青项目、天津市杰青项目等,荣获霍英东基金会青年科学奖二等奖、中国工业与应用数学学会应用数学青年科技奖、中国运筹学会青年科技奖等。
五、邀请人:
颜谨 数学学院教授
六、时间:
11月4日(周五)14:00-15:00
七、地点:
腾讯会议
八、联系人:
颜谨,联系方式:13964055656
九、主办:
山东大学数学学院