学习强国

微信

山大发布

抖音

视频号

微博

小红书

快手

哔哩哔哩

山东大学报

学术预告

数学学院珠峰论坛第474期:Romanoff's theorem for polynomials over finite fields revisited

发布:山东大学融媒体中心 日期:2021年12月14日

一、题目:

Romanoff's theorem for polynomials over finite fields revisited

二、主讲人:

周海燕

三、摘要:

Let g be a given polynomial of positive degree over a finite field. Shparlinski and Weingartner proved that the proportion of monic polynomials of degree n which can be represented by $h + g^k$ has the order of magnitude 1/deg g, where h is chosen from the setof irreducible monic polynomials of degree n and k∈N. In this talk,we show that the proportion of monic polynomials of degree n which can be written as $l + g^p$ where l is the product of two monic irreducible polynomials with deg l = n and p is a prime number, still has the order of magnitude 1/deg g.

四、主讲人简介:

周海燕(南京师范大学数学科学学院教授)

五、邀请人:

赵立璐 数学学院教授

六、时间:

12月17日(周五)15:00

七、地点:

腾讯会议,会议ID:284 613 157

八、主办方:

山东大学数学学院


【供稿单位:数学学院     作者:张志越    责任编辑:蒋晓涵】