一、题目
A finite element approximation for nematic liquid crystal flow with stretching effect based on non-incremental pressure-correction method
二、主讲人
贾宏恩
三、摘要
In this talk, a new decoupling method is proposed to solve a nematic liquid crystal flow with stretching effect. In the finite element discrete framework, the director vector is calculated by introducing a new auxiliary variable ω and the velocity vector and scalar pressure are decoupled by a non-incremental pressure-correction projection method. Then, we give the energy dissipation law of this decoupled system and prove that the system is unconditionally energy stable. Finally, numerical examples are given to discuss the effects of various parameters on the singularity annihilation and stability of the proposed numerical scheme as well as its numerical accuracy in space and time.
四、主讲人介绍
贾宏恩,太原理工大学数学学院教授、硕士生导师,主要研究方向为偏微分方程理论及其数值计算,流体方程、相场方程的数值方法,主持省部级以上科研项目6项,接收或发表论文40多篇,其中SCI文章30多篇,相关文章发表在Comput. Methods. Appl. M.、Comput. Math. Appl.、Numer. Meth. Part. D. E.、Appl. Numer. Math.、Commun. Comput. Phys.等刊物上。2018年入选山西省“三晋英才”青年优秀人才计划,指导毕业10名硕士研究生,其中8名考取985高校博士研究生。
五、邀请人
孙同军 数学学院教授
六、时间
12月10日(周五)15:00-16:30
七、地点
腾讯会议,ID:826 217 716
八、主办方
山东大学数学学院